Multiple Integrals



15.1

Double and Iterated Integrals over
Rectangles
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FIGURE 15.1 Rectangular grid
partitioning the region R into small
rectangles of area A4, = Ax; Ayy.
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FIGURE 15.2 Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of f(x, y) over
the base region R.
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n—0Q0

Volume = lim S, = // f(x,y) dA,
R

where A4, — 0 as n — 00,
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(ayn =16 (b)yn = 64 (c)n = 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 6



z2=4—-x—y

- ].

ST,
ol s

poo GTXTNd

[=g

X

FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and
integrate with respect to y.
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FIGURE 15.5 To obtain the cross-sectional
area A(y), we hold y fixed and integrate
with respect to x.
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THEOREM 1—Fubini’s Theorem (First Form)  If f(x, y) is continuous throughout
the rectangular region R:a = x = b,c = y = d, then

d rb b rd
/ fx,y) dA = / / f(x, ) d dy = / / 15, ) dy d.

R
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I
EXAMPLE 1 Calculate [[,, f(x, y) dA for

f(x,y) =100 —6x’%» and R 0=x=2, -1=y=1.

Solution  Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

/ fx,y)dA = // (100 — 6x%y) dx dy = [: [100x — 233 ['22 dy

1
= / | (200 — 16y) dy = [200y — 8y%]', = 400.

Reversing the order of integration gives the same answer:

2 [1 2
// (100 — 6x%y) dy dx = / [IOOy - 3x2y2]§_11 dx
0 J-1 0

2
= f [(100 — 3x?) — (=100 — 3x?)] dx
0

2
= / 200 dx = 400.
0
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FIGURE 15.6 The double integral

f f » J(x,y) d4 gives the volume under this
surface over the rectangular region R
(Example 1).
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z =10 + x? + 3y

FIGURE 15.7 The double integral
ff r J(x,y) dA gives the volume under this
surface over the rectangular region R

(Example 2).
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15.2

Double Integrals over
General Regions
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FIGURE 15.8 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.
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If f(x, y) 1s positive and continuous over R, we define the volume of the solid region be-
tween R and the surface z = f(x, y) to be f f = f(x,y) dA, as before (Figure 15.9).

If R is a region like the one shown in the xy-plane in Figure 15.10, bounded “above”
and “below” by the curves y = g>(x) and y = gi(x) and on the sides by the lines
x = a,x = b, we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

y=g(x)
Am=f f(x,y) dy
y

=g1(x)

and then integrate A(x) from x = a to x = b to get the volume as an iterated integral:

b b [gx)
V=/Awﬁ=//‘fmw@@ (1)
a a gl(x)

Similarly, if R is a region like the one shown in Figure 15.11, bounded by the curves
x = hy(y) and x = hy(y) and the lines y = ¢ and y = d, then the volume calculated by
slicing 1s given by the iterated integral

Volume = /[ f(x, y) dxdy. (2)
h(y)
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z z=fxy)

Helght = f (xk, yk)

(s Y1)

Volume = lim >, fix;, y) AA; = f J f(x, y)dA
R

FIGURE 15.9 We define the volumes of solids
with curved bases as a limit of approximating
rectangular boxes.
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z=f(x,y)

FIGURE 15.10 The area of the vertical
slice shown here is 4(x). To calculate the
volume of the solid, we integrate this area
fromx = atox = b:

b b gx)
/ Alx) dx = / f(x,y) dy dx.

gi1(x)
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s

x=hyy)

FIGURE 15.11 The volume of the solid
shown here is

d d [hy)
/ Aly) dy = / [ o) sy

For a given solid, Theorem 2 says we can
calculate the volume as in Figure 15.10, or
in the way shown here. Both calculations
have the same result.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 18



THEOREM 2—Fubini’s Theorem (Stronger Form)  Let f(x, y) be continuous on a
region R.

1. If Risdefinedbya = x = b, g1(x) = y = g2(x), with g and g, continuous

on [a, b], then
b 8’2(36)
/f fx, y) dA = / / ) v
a Jgx
R

2. IfRisdefinedbyc = y = d, hi(y) = x = hy(y), with 4, and A, continuous

on [c, d], then
d [hy)
//f(x,y) dA =// f(x,y) dxdy.
? c Jh(y)
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EXAMPLE 1 Find the volume of the prism whose base is the triangle in the xy-plane
bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

z=flx,y) =3 —x— .

Solution  See Figure 15.12. For any x between 0 and 1, y may vary from y = Oto y = x
(Figure 15.12b). Hence,

1 frx 1 y2 y=x
V=/f(3—x—y)dydx=/[3y—xy—7] dx
0 Jo 0 y=0
[[(-)e- 51
= 3x ——=)|dx = |—"7 — F = 1.
0 2 2 2 li=o
When the order of integration is reversed (Figure 15.12¢), the integral for the volume is
1,1 1 2 x=1
V:ff(3—x—y)dxdy=/ !3x—7—xy] dy
0 Jy 0 x=y
1 2
— N Y o2
= ﬁ (3 > Ty 3y + >ty ) dy

1 3 y=1
_ 5_ 32 gy =12y 02 a2 | =
—ﬁ (2 4y+2y)dy—[2y 2y +2] 1.

yv=0

The two integrals are equal, as they should be.
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~ —x=1

(©)

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is defined
as a double integral over R. To evaluate it as an iterated integral, we may integrate first with respect
to y and then with respect to x, or the other way around (Example 1). (b) Integration limits of

x=1 fy=x
/ f(x,y) dy dx.
x=0 Jy=0

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate
from left to right to include all the vertical lines in R. (c) Integration limits of

y=1 px=1
f f(x,y) dx dy.
y=0 Jx=y

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.
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FIGURE 15.13 The region of integration
in Example 2.
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Yy \ Leaves at

/y—m

1
R Enters at
> X y=1-x

L
(@)
> X
0 X 1
/ /
‘): ‘ . Smallest x Largest x
' eaves at isx=0 sx=1
| / y = A /1 _ JC2
Y Enters at ©
y=1-x

FIGURE 15.14 Finding the limits of
0 x 1 integration when integrating first with
respect to y and then with respect to x.

(b)
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N x=1-y

y >

"N L
Smallest y caves at
isy =0 x=V1-)
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FIGURE 15.15 Finding the limits of
integration when integrating first with
respect to x and then with respect to y.
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FIGURE 15.16 Region of
integration for Example 3.
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If f(x, y) and g(x, y) are continuous on the bounded region R, then the following
properties hold.

1. Constant Multiple: / / cf(x,y)dA = c /f f(x,y)dA (any number c)
R R

2. Sum and Difference:

// (5, ) + gx, ) dd = // [x, ) dA & f] o, y) dA
R R

R

3. Domination:

(a) //f(x,y) d4 =0 if f(x,y) = 0onR
R

(b) ff f(x,y)dA = ff glx,y)dd if  f(x,y) = g(x,y)onR
R R

4. Additivity: / / f(x,y)dd = // fx,y)dA + f/ f(x, ) d4
R Ry R,

if R is the union of two nonoverlapping regions R; and R,
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R, R=R,UR,

\_J/ > X

0
[] vy da = [ oo vy da + ] 1. ) an
R R, R,

FIGURE 15.17 The Additivity Property
for rectangular regions holds for regions
bounded by continuous curves.
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(a)

FIGURE 15.18 (a) The solid “wedgelike”

- / % % region whose volume is found in Example 4.
. (b) The region of integration R showing
0 0> ! the order dx dy.
(b)
Slide 15- 28
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15.3

Area by Double Integration
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DEFINITION  The area of a closed, bounded plane region R is

i~ s

R
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EXAMPLE 1  Find the area of the region R bounded by y = x and y = x? in the first
quadrant.

Solution  We sketch the region (Figure 15.19), noting where the two curves intersect at
the origin and (1, 1), and calculate the area as

1 fx 1 X
4= f/ dy dx = / ly} dx
0 Jx? 0 X2

1 2 31
_ oy g Xt xT 1
—A(x x°) dx [2 3]0 <

Notice that the single-variable integral j;) (x — x?) dx, obtained from evaluating the in-
side iterated integral, is the integral for the area between these two curves using the
method of Section 5.6.
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FIGURE 15.19 The region in Example 1.
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-1, 1)

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

0
(b)

FIGURE 15.20 Calculating this area
takes (a) two double integrals if the first
integration 1s with respect to x, but (b) only
one if the first integration is with respect

to y (Example 2).
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_ 1
Average value of f over R = area of R ﬂ fdA. (3)
R

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 34



EXAMPLE 3  Find the average value of f(x,y) = xcosxy over the rectangle
RO=x=m, 0=y =1.

Solution The value of the integral of f over R is

T 1 T y=1 .
. xcosxydy = sinxy + C
xcosxydydx = sin xy dx
0 JO 0 y=0

=/(sinx—0)dx=—cosx] =1+1=2.
0 0

The area of R is 7. The average value of f over R is 2/7r.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 35



15.4

Double Integrals in
Polar Form
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FIGURE 15.21 Theregion R: 21(0) = r = g5(0), a = 6 = B, is contained in the fan-
shaped region Q: 0 = r = a, a = 6 = B. The partition of Q by circular arcs and rays
induces a partition of R.
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Small sector

Large sector
0
FIGURE 15.22  The observation that
Ady = (laragr: ie(::ior) N (smaaﬁzgcior)
leads to the formula A4, = r;p Ar A6.
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L
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> X
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()

or
r=V2csc Enters at r = V2 csc 0

0

FIGURE 15.23 Finding the limits of

(b)

> X integration in polar coordinates.
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r=1+4cos@f

2, x
/ L
g=_7 Enters Leaves at
2 at r=1+ cos 6
yF =

FIGURE 15.24 Finding the limits of
integration in polar coordinates for the
region in Example 1.
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EXAMPLE 1  Find the limits of integration for integrating f(r, #) over the region R that
lies inside the cardioid » = 1 + cos 6 and outside the circle » = 1.

Solution
1. We first sketch the region and label the bounding curves (Figure 15.24).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where
r = 1 and leaves where »r = 1 + cos 6.

3. Finally we find the 6-limits of integration. The rays from the origin that intersect R run
from 0 = —m/2to 6 = /2. The integral is

w/2 [ 1+cos6
f / f(r,0)rdrdo.
—m/2 J1
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Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A= //rdrdﬂ.

R
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y
A

Leaves at
r=\V4 cos 26

/ > X
Enters at AN - r® =4 cos 26
r=20 4

FIGURE 15.25 To integrate over the
shaded region, we run » from 0 to

V4 cos 26 and 6 from 0 to /4
(Example 2).
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FIGURE 15.26 The semicircular region
in Example 4 is the region

0=r=1, 0=60= .
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FIGURE 15.27 The solid region in
Example 5.
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FIGURE 15.28 Theregion R in
Example 6.
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15.5

Triple Integrals In
Rectangular Coordinates
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FIGURE 15.29 Partitioning a solid with
rectangular cells of volume AV .
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DEFINITION The volume of a closed, bounded region D in space is

o~ [

D
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Leaves at
z=8—x2—y?
z=8—x2—y2

The curve of intersection

Enters at 1
z=x%+ 3y2 E—

Enters at e (-2,0,0)
y=-V({@4-x%)/2

(2,0,0)

Leaves at / L ¥

y="V4—-x*)/2

FIGURE 15.30 The volume of the region enclosed by two paraboloids,
calculated in Example 1.
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O, 1, 1)

" Leaves at
y=1

Enters at
y=x+2z2

FIGURE 15.31 Finding the limits of
integration for evaluating the triple integral
of a function defined over the tetrahedron
D (Examples 2 and 3).
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EXAMPLE 3  Integrate F(x,y,z) = 1 over the tetrahedron D in Example 2 in the order
dz dy dx, and then integrate in the order dy dz dx.

Solution  First we find the z-limits of integration. A line M parallel to the z-axis through a
typical point (x, y) in the xy-plane “shadow” enters the tetrahedron at z = 0 and exits
through the upper plane where z = y — x (Figure 15.32).

Next we find the y-limits of integration. On the xy-plane, where z = 0, the sloped side
of the tetrahedron crosses the plane along the line y = x. A line L through (x, y) parallel to
the y-axis enters the shadow in the xy-plane at y = x and exits at y = 1 (Figure 15.32).

Finally we find the x-limits of integration. As the line L parallel to the y-axis in the
previous step sweeps out the shadow, the value of x varies from x = 0 to x = 1 at the
point (1, 1, 0) (see Figure 15.32). The integral is

1 1 fy—x
/ / ] F(x, v, z) dz dy dx.
0 Jx JO
For example, if F(x, y,z) = 1, we would find the volume of the tetrahedron to be
1 1 py—x
o ([
0 Jx Jo
1 p1
= / / (y — x)dydx
0 Jx
oo
= YT — X dx
A zy 4 y=x
"1 1
_ 1 1 -
= l (2 x + 7 X ) dx

Continued on next page
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We get the same result by integrating with the order dy dz dx. From Example 2,

1 fl1—x f1
=// / dy dz dx
// (1 —x —z)dzdx
B 1 z=1—x
—‘L _1_x)z_5221_0 dx
1
-/ (- 02 - L0t - 02 ax
= /(1—x)2

— (l—x)] I3

p—n
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X

FIGURE 15.32 The tetrahedron in
Example 3 showing how the limits of
integration are found for the order dz dy dkx.
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FIGURE 15.33 The region of integration
in Example 4.
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15.0

Moments and Centers of Mass
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FIGURE 15.34 To define an object’s
mass, we first imagine it to be partitioned

into a finite number of mass elements
Amk.
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X

FIGURE 15.35 Finding the center of
mass of a solid (Example 1).
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EXAMPLE 1  Find the center of mass of a solid of constant density 6 bounded below
by the disk R:x*+ y> =4 in the plane z =0 and above by the paraboloid
z = 4 — x* — y? (Figure 15.35).

Solution By symmetry x = y = 0. To find z, we first calculate

z=4—x2—y2 Zz z=4—x2—y2
Mxy=/// zSdzdydx:f/[El 0 dy dx
z=0 z=0
R R
= g//@ —x? =y dydx
R
2

27

0

=5 (4 — r2)2 rdr do Polar coordinates simplify the integration.
0 0

(T 1, aaTr 168 [P 32w
—% {6(4 r)LOde— [ do =

A similar calculation gives the mass

4—xr—)?
M:/// o0 dzdydx = 8md.
0
R

Therefore z = (M,,/M) = 4/3 and the center of mass is (X, y,z) = (0, 0, 4/3).
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TABLE 15.1 Mass and first moment formulas

THREE-DIMENSIONAL SOLID

Mass: M = [/:/3 av 8 = 8(x, y, z) is the density at (x, y, 2).
D

First moments about the coordinate planes:

Myz=£//xadrf, sz=é/fy6dv, Mw=é//zﬁdV

Center of mass:
MyZ sz Mxy

z =

M YT M M

X =

TWO-DIMENSIONAL PLATE

Mass: M = /]5 dA 0 = 8(x, y) is the density at (x, y).
R

First moments: M, = //x 0 dA, M, = /fy& dA
R R
M,

My __ M
M YT M

Center of mass: X
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FIGURE 15.36 The centroid of this
region 1s found in Example 2.
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FIGURE 15.37 To find an integral for the
amount of energy stored in a rotating shaft,
we first imagine the shaft to be partitioned
into small blocks. Each block has its own
kinetic energy. We add the contributions of
the individual blocks to find the kinetic
energy of the shaft.
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FIGURE 15.38 Distances from dV to the
coordinate planes and axes.
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EXAMPLE 3  Find I, I, I, for the rectangular solid of constant density 6 shown in
Figure 15.39.

Solution  The formula for Z; gives
c/2 b2
I, = f (y? + z2) 6 dx dy d=.
—c/2 J—b/2 J—a/2

We can avoid some of the work of integration by observing that (y? + z%)§ is an even
function of x, y, and z since & is constant. The rectangular solid consists of eight symmetric
pieces, one in each octant. We can evaluate the integral on one of these pieces and then
multiply by 8 to get the total value.

b2 b2
I —8/ / f (y +zz)8dxdydz—4a6f / (y? + z3)dydz
c/2 y=>b/2
5/ {? + zzy} dz
0 y=0
c/2 b3 b
‘L‘ (ﬁ + T) dz

3 3
4a5(b—;+4—é)) —(b2+c2)— (b2+c) M = abed

4q
da

=%}

Similarly,

I, = I—J‘g(a2 + ¢?) and L= %(.ﬂt2 + b2).
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Center of
a block

X

FIGURE 15.39 Finding /., /,, and I for

the block shown here. The origin lies at the
center of the block (Example 3).
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TABLE 15.2 Moments of inertia (second moments) formulas

THREE-DIMENSIONAL SOLID

About a line L: I = ///r2 sdv

TWO-DIMENSIONAL PLATE

About the x-axis: I, = f/ (Y2 +22)8dV  8=0dxy2)
About the y-axis: I, = f/ (x2+ 2% 86dV
About the z-axis: L = f/ (x* +yH) 8dV

r(x, v, z) = distance from the
point (x, y, z) to line L

About the x-axis: I, = f/ y28dA 6 = 8(x, )
About the y-axis: I, = // x%8 dA
. . 2 r(x, y) = distance from
About a line L: I, = //r (x,y) 8 dA (. ) to L
About the origin Iy = f/ (x2+yH)édd =1, + I,
(polar moment):
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FIGURE 15.40 The triangular region
covered by the plate in Example 4.
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Beam A

Axis

Beam B

Axis

FIGURE 15.41 The greater the polar
moment of inertia of the cross-section of a
beam about the beam’s longitudinal axis, the
stiffer the beam. Beams A and B have the
same cross-sectional area, but A is stiffer.
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15.7

Triple Integrals in Cylindrical and
Spherical Coordinates
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> N

FIGURE 15.42 The cylindrical
coordinates of a point 1n space are r, 0,
and z.
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DEFINITION  Cylindrical coordinates represent a point P in space by ordered
triples (r, 6, z) in which

1. » and 6 are polar coordinates for the vertical projection of P on the xy-plane

2. z 1s the rectangular vertical coordinate.
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Equations Relating Rectangular (x, y, z) and Cylindrical (r, 6, z) Coordinates

X = rcosé, y = rsind, z =z,

r? = x*+ y? tan @ = y/x
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FIGURE 15.43 Constant-coordinate
equations in cylindrical coordinates
yield cylinders and planes.
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FIGURE 15.44 In cylindrical coordinates
the volume of the wedge 1s approximated
by the product AV = Azr Ar A6.
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Top
Cartesian: z = x> + y?
Cylindrical: z = r*

(r, )

Cartesian: x2 + (y — 1)? = 1
X Polar: r=2sin6

FIGURE 15.45 Finding the limits of
integration for evaluating an integral in
cylindrical coordinates (Example 1).
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FIGURE 15.46 Example 2 shows how to
find the centroid of this solid.
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FIGURE 15.47 The spherical coordinates
p, ¢, and 6 and their relation to x, y, z, and .
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DEFINITION  Spherical coordinates represent a point P in space by ordered
triples (p, ¢, 6) in which

1. p is the distance from P to the origin.
2. ¢ is the angle OP makes with the positive z-axis (0 =< ¢ = 7).
3. 0 is the angle from cylindrical coordinates (0 =< 0 = 277).
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FIGURE 15.48 Constant-coordinate
equations in spherical coordinates yield
spheres, single cones, and half-planes.
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Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

r = psin g, X =rcosf = psin¢cosh,

Z = pcos ¢, y = rsinf = psin ¢ sin b, (1)

p=Vx2+y2+22=\Vr2+ 22
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FIGURE 15.49 The sphere in Example 3.
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FIGURE 15.50 The cone in Example 4.
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Volume Differential in Spherical
Coordinates

dV = p*sin ¢ dp dop do

0 + A6
X

FIGURE 15.51 In spherical coordinates
dV =dp-pdd-psine db
= p?sin ¢ dp d¢ db.
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FIGURE 15.52 The ice cream cone in
Example 5.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 84



Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO
RECTANGULAR RECTANGULAR CYLINDRICAL
X = rcosf X = psin¢cosb r = psin¢
y = rsinf y = psin¢sinf zZ = pcos¢
z =7z z = pcosd¢ 0=20
Corresponding formulas for dV in triple integrals:
dV = dxdydz
= dzrdrdb
= p?sin ¢ dp dep db
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15.8

Substitutions in Multiple Integrals
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FIGURE 15.53 The equations

x = g(u,v) and y = h(u, v) allow us to
change an integral over a region R in the
xy-plane into an integral over a region G
in the uv-plane by using Equation (1).
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DEFINITION The Jacobian determinant or Jacobian of the coordinate
transformation x = g(u, v),y = h(u, v) is
ox  ox
du Jv ox 9y 9y 9x
S, v) = gy dy| oudv C Qudv” (2)
ou v
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FIGURE 15.54 The equations x =

0 1
Cartesian xy-plane rcos 6, y = rsin 0 transform G into R.
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FIGURE 15.55 The equations x = u + v and y = 2v transform G into
R. Reversing the transformation by the equations # = (2x — y)/2 and
v = y/2 transforms R into G (Example 2).
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xy-equations for Corresponding uv-equations Simplified

the boundary of R for the boundary of G uv-equations
x =y/2 utv=2v/2=v u=20
x=(y/2) +1 u+v=_2u/2)+1=v+1 u =1
y=20 2v =20 v=20
y=4 2v =4 v=2
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FIGURE 15.56 The equations x =

(u/3) — (v/3) and y = (2u/3) + (v/3)
transform G into R. Reversing the
transformation by the equationsu = x + y
and v = y — 2x transforms R into G

0 \ .7 (Example 3).
y=0
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xy-equations for Corresponding uv-equations Simplified
the boundary of R for the boundary of G uv-equations
x+y=1 u_vy4 2u +2) =1 u=1
Y 33 3 3
_ u_uv _ —
x =0 3 3 0 vV =1u
_ 2u v _ _
y=20 3 + 3 0 v 2u
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FIGURE 15.57 The region of
integration R in Example 4.
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FIGURE 15.58 The boundaries of the
region G correspond to those of region R
in Figure 15.57. Notice as we move
counterclockwise around the region R, we
also move counterclockwise around the
region G. The inverse transformation
equations u = Vxy, v = Vy/x produce
the region G from the region R.
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x = g(u, v, w)
y = h(u, v, w)
z = k(u, v, w)
>
u Cartesian uvw-space % Cartesian xyz-space

FIGURE 15.59 The equations x = g(u, v, w),y = h(u, v, w),and z = k(u, v, w)
allow us to change an integral over a region D in Cartesian xyz-space into an
integral over a region G in Cartesian uyw-space using Equation (7).
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FIGURE 15.60 The equations

x =rcosf,y =rsinf,and z = z
transform the cube G into a cylindrical
wedge D.
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Cube with sides p = constant

parallel to the
g  coordinate axes z
A A (x, y, Z)
X = psin ¢ cos 6
y = psin ¢ sin 6
Z=pcoso

6 = constant
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P Cartesian p¢8-space X Cartesian xyz-space

FIGURE 15.61 The equations x = psin¢ cosf,y = p sin ¢ sin 0, and
z = p cos ¢ transform the cube G into the spherical wedge D.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 15- 98



Rear plane:

X = %,0ry=2x

34\))}
4
. .

Front plane:

x=% + lLory=2x-2

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 15.62 The equations
X=u+v,y=2v,andz = 3w
transform G into D. Reversing the
transformation by the equations

u= 2x —y)/2,v=y/2,andw = z/3
transforms D into G (Example 5).
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xyz-equations for Corresponding uvw-equations Simplified

the boundary of D for the boundary of G uvw-equations
x = y/2 u+uv=2v/2=uv u=20
x=(y/2) +1 utv=_Q2u/2)+1=v+1 u="1
y=20 2v = v=20
y=4 v = v=2
z=0 3w = w=20
z=3 3w = w=1
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